Bang-Bang Refocusing of a Qubit Exposed to Telegraph Noise

نویسندگان

  • Henryk Gutmann
  • Frank K. Wilhelm
  • William M. Kaminsky
  • Seth Lloyd
چکیده

Solid state qubits promise the great advantage of being naturally scalable to large quantum computer architectures, but they also possess the significant disadvantage of being intrinsically exposed to many sources of noise in the macroscopic solid-state environment. With suitably chosen systems such as superconductors, many of sources of noise can be suppressed. However, imprecision in nanofabrication will inevitably induce defects and disorder, such as charged impurities in the device material or substrate. Such defects generically produce telegraph noise and can hence be modelled as bistable fluctuators. We demonstrate the possibility of the active suppression of such telegraph noise by bang–bang control through an exhaustive study of a qubit coupled to a single bistable fluctuator. We use a stochastic Schrödinger equation, which is solved both numerically and analytically. The resulting dynamics can be visualized as diffusion of a spin vector on the Bloch sphere. We find that bang–bang control suppresses the effect of a bistable fluctuator by a factor roughly equalling the ratio of the bang–bang period and the typical fluctuator period. Therefore, we show the bang–bang protocol works essentially as a high pass filter on the spectrum of such telegraph noise sources. This suggests how the influence of 1/f -noise ubiquitous to the solid state world could be reduced, as it is typically generated by an ensemble of bistable fluctuators. Finally, we develop random walk models that estimate the level of noise suppression resulting from imperfect bang–bang operations, such as those that cannot be treated as δ-function impulses and those that have phase and axis errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact solution for the dynamical decoupling of a qubit with telegraph noise

We study the dissipative dynamics of a qubit that is afflicted by classical random telegraph noise and is subject to dynamical decoupling. We derive exact formulas for the qubit dynamics at arbitrary working points in the limit of infinitely strong control pulses bang-bang control , and we investigate in great detail the efficiency of the dynamical decoupling techniques for both Gaussian and no...

متن کامل

Exact solution of a model of qubit decoherence due to telegraph noise

We present a general and exact formalism for finding the evolution of a quantum system subject to external telegraph noise. The various qubit decoherence rates are determined by the eigenvalues of a transfer matrix. The formalism can be applied to a qubit subject to an arbitrary combination of dephasing and relaxational telegraph noise, in contrast to existing non-perturbative methods that trea...

متن کامل

Effect of random telegraph noise on entanglement and nonlocality of a qubit-qutrit system

We study the evolution of entanglement and nonlocality of a non-interacting qubit-qutrit system under the effect of random telegraph noise (RTN) in independent and common environments in Markovian and non-Markovian regimes. We investigate the dynamics of qubit-qutrit system for different initial states. These systems could be existed in far astronomical objects. A monotone decay of the nonlocalit...

متن کامل

Modeling of Jitter Characteristics for the Second Order Bang-Bang CDR

Bang-Bang clock and data recovery (BBCDR) circuits are hard nonlinear systems due to the nonlinearity introduced by the binary phase detector (BPD). The specification of the CDR frequency response is determined by jitter tolerance and jitter transfer. In this paper, jitter transfer and jitter tolerance of the second-order BBCDR are characterized by formulating the time domain waveforms. As a re...

متن کامل

Using Modified IPSO-SQP Algorithm to Solve Nonlinear Time Optimal Bang-Bang Control Problem

In this paper, an intelligent-gradient based algorithm is proposed to solve time optimal bang-bang control problem. The proposed algorithm is a combination of an intelligent algorithm called improved particle swarm optimization algorithm (IPSO) in the first stage of optimization process together with a gradient-based algorithm called successive quadratic programming method (SQP) in the second s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Quantum Information Processing

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2004